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ABSTRACT
Objective Vast amounts of injury narratives are
collected daily and are available electronically in real
time and have great potential for use in injury
surveillance and evaluation. Machine learning algorithms
have been developed to assist in identifying cases and
classifying mechanisms leading to injury in a much
timelier manner than is possible when relying on manual
coding of narratives. The aim of this paper is to describe
the background, growth, value, challenges and future
directions of machine learning as applied to injury
surveillance.
Methods This paper reviews key aspects of machine
learning using injury narratives, providing a case study to
demonstrate an application to an established human-
machine learning approach.
Results The range of applications and utility of
narrative text has increased greatly with advancements
in computing techniques over time. Practical and feasible
methods exist for semiautomatic classification of injury
narratives which are accurate, efficient and meaningful.
The human-machine learning approach described in the
case study achieved high sensitivity and PPV and
reduced the need for human coding to less than a third
of cases in one large occupational injury database.
Conclusions The last 20 years have seen a dramatic
change in the potential for technological advancements
in injury surveillance. Machine learning of ‘big injury
narrative data’ opens up many possibilities for expanded
sources of data which can provide more comprehensive,
ongoing and timely surveillance to inform future injury
prevention policy and practice.

INTRODUCTION
Injury narratives have long been recognised as valu-
able sources of information to understand injury
circumstances and are increasingly available in the
era of ‘big data’. Narrative text mining and
machine learning techniques have been developed
that take advantage of greatly increased computing
power and ‘big data’ to make predictions based on
algorithms constructed from the data. However,
along with the opportunities, challenges in
adequately accessing and using injury narratives for
public health surveillance and prevention exist. In
this paper the authors describe the background,
growth and utility of machine learning of injury
narratives. A case study is also provided to demon-
strate the application of an established human-
machine learning approach. The authors then
discuss the challenges and future directions of
machine learning as applied to injury surveillance.

BACKGROUND
The 1990s marked the beginning of the electronic
era; email and the internet were surfacing and elec-
tronic records took the form of .dbf files tran-
scribed from hard copy files. In a 1997 article
Sorock et al identified innovative approaches to
improvements in work-related injury surveillance
that reflected the utility of electronic records at this
time.1 These include1 the use of narrative text
fields from injury databases to extract useful epi-
demiological data,2 data set linkage for aiding in
incidence rate calculations and3 the development of
comprehensive company-wide injury surveillance
systems. Now almost 20 years later, the opportun-
ities have expanded greatly; large amounts of
coded injury data and text descriptions of injury
circumstances (injury narratives) are being col-
lected daily and are available in real time.
However, while there have been some collective
efforts to standardise injury data collection and
classification systems, very little has been done to
develop and standardise machine learning
approaches using injury narratives.
WHO guidelines specify the following require-

ments for injury surveillance: to facilitate
ongoing data collection, in a systematic way,
which enables analysis and interpretation for
timely dissemination which can be applied to pre-
vention and control.2 However, often injury
information (for morbidity and mortality inci-
dence reporting) is collected and may be classi-
fied without considering these requirements.
While the data may be coded according to a stan-
dardised classification protocol (eg, International
Classification of Diseases (ICD) coding in hospi-
tals) the people assigning the codes are often
administrative staff classifying the cases for
billing purposes (not for prevention), with little
professional training, although hospital discharge
data is usually coded by a professional nosologist.
In order to get these data recoded in such a way
as to satisfy the requirements of surveillance
requires significant investment and resources.
On the other hand there are some national agen-

cies such as the National Center for Health
Statistics which in addition to mortality coding use
their nosologists to classify medical conditions,
drugs and injuries reported in their large national
health surveys in the USA (eg, the National Health
and Nutrition Examination Survey and the
National Health Survey). Coding systems useful to
injury epidemiologists include: the ICD,
International Classification of External Causes,3

Vallmuur K, et al. Inj Prev 2016;0:1–9. doi:10.1136/injuryprev-2015-041813 1

Original article

group.bmj.com on January 11, 2016 - Published by http://injuryprevention.bmj.com/Downloaded from 

http://injuryprevention.bmj.com
http://injuryprevention.bmj.com/
http://group.bmj.com


and Nordic Classification of External Causes.4 Occupational
injury surveillance systems however usually assign and use separ-
ate coding strategies aimed at identifying work exposures such
as the National Institute for Occupational Safety and Health
(NIOSH) Occupational Injury and Illness Classification System
(OIICS)5 and the Type Of Occurrence Classification Scheme.6

These codes are often used for surveillance. However, even if
the time and resources have been allotted to having trained
coders assign these codes, there are still limitations in using the
coded data alone. These include the limited scope, breadth and
depth of injury mechanisms and scenarios captured from the
codes (specifically reducing their value for injury prevention and
control) and reliance on predetermined circumstances that may
not capture all or the very unique case scenarios,7 nor all rele-
vant injury factors (host, agent, vector, environment) contribut-
ing to an injury event as defined by Haddon.8

The utility of injury narratives for surveillance
Two recent reviews9 10 outlined a range of benefits for using
narratives as a supplement to the restrictions of coded data,
including: the identification of cases not able to be detected
from coded data elements alone, extracting more specific infor-
mation than codes allow, extracting data fields which aren’t part
of the prior coding schemas, establishing chain of events, identi-
fying causes without specific codes and assessing coding
accuracy.

Narrative text analyses also enables the identification of rare
or emerging events usually not found using administratively
assigned codes, a critical concern in injury surveillance.11–14

Incident narratives in their raw form can also be available in a
more ‘timely’ manner than coded data and are now being used
in novel applications such as syndromic surveillance.15 16

The range of applications and utility of narrative text has also
increased with recent advancements in computing techniques.
However, some of the earliest applications predate the ability to
search text electronically and were simply to identify cases to
overcome the lack of reported or coded data. These include
using newspaper clipping services where people were paid to
read newspapers and identify articles that reference any of the
injury or fatality topics on a list related to clients’ interests who
had paid the service to look for articles containing target words
about specific companies.17 18 Now that news articles are on the
web, computerised search has greatly simplified the process of
searching for injury incidents using services such as Nexus.

Nowadays, with significant increases in the technological cap-
abilities and capacity of computer systems, injury narratives
which contain essential information about how the injury event
occurred are more widely available in an ‘ongoing’ manner
across a range of agencies (including but not limited to emer-
gency services/first responders (ambulance, fire service, police),
emergency departments/hospitals/trauma registries, coronial
systems, occupational health and safety, insurance/compensation
agencies (workplace/health/motor vehicle), consumer safety
agencies, news services and even social networking sites (twitter/
facebook), etc).

However, using these data for surveillance has historically
proven cost-prohibitive and fraught with human error. Bertke
et al19 reported that it took a single researcher 10 h (over the
course of a few weeks to mitigate fatigue) to code 2400
workers’ compensation injuries. Taylor et al20 reported 100
total hours for three coders to discern cause of injury and recon-
cile differences from firefighter near-miss and injury narratives.
As a database grows, the additional resources required to
code the records become increasingly labour-prohibitive,

cost-prohibitive and time prohibitive. Only recently has the use
of computerised coding algorithms enabled large-scale analysis
of narrative text, presenting an efficient and plausible way for
individuals to code large narrative data sets with accuracies of
up to 90%.19 21 While autocoding increases accuracy and effi-
ciency, it does not eliminate the need for human review entirely
as humans must initially train the algorithm and conduct post
hoc quality review.

There have been some limited situations where automated
classification of injury narratives has become integrated into
routine processes for national statistical purposes to reduce the
amount and costs of manual coding, improve coding uniformity
and reduce the time taken to process records. For example,
many countries use software to automatically process injury text
recorded on death certificates for broad ICD cause of death
coding22 and the NIOSH in the USA has made available an
online tool to aid state public health organisations in determin-
ing NIOSH occupation and industry codes.23 These software
programs built over several decades allow a substantial subset of
records to be automatically coded usually with the caveat of
limited accuracy. The accuracy however can often be improved
if the algorithm is able to identify those which would be more
accurately coded by humans (or should be unclassifiable) or that
the software cannot confidently assign a code.

Over the past two decades, several authors of this paper have
completed a number of studies1 24 25 21 26 27 20 on the utilisa-
tion of computer algorithms to streamline the classification of
the event (or causes) documented in injury narratives for sur-
veillance purposes. Their focus has been to create machine
learning techniques to quickly filter through hundreds of thou-
sands of narratives to accurately and consistently classify and
track high-magnitude, high-risk and emerging causes of injury,
information which can be used to guide the development of
interventions for prevention of future injury incidents.28 The
results of this work have enabled the annual classification of
very large batches of workers compensation (WC) claim inci-
dent narratives into Bureau of Labor Statistics (BLS) OIICS
event codes for input in deriving the annual Liberty Mutual
Workplace Safety Index—a surveillance metric ranking the
leading causes (in terms of direct WC cost) of the most disabling
work-related injuries in the USA every year.29

Table 1 also provides examples of other studies, describing
early uses and other more complex uses of narrative text. These
examples include the integration of machine learning techniques
to demonstrate the changing nature of this field.

CASE STUDY
To demonstrate one successful approach to the use of machine
learning to classify injury narratives, the following case study
briefly summarises a recent study by Marucci-Wellman et al26

that accurately classified 30 000 WC narratives into injury
events using a human-machine learning approach in order to
match cost of claims by event category with national counts
from the BLS Survey of Occupational Injury and Illness data.
Coders who had been trained extensively on the BLS OIICS
read each claim incident narrative on the case and classified the
event that led to work-related injury into 1 of approximately 40
two-digit event codes. The data set was divided into a training
set of 15 000 cases used for model development, and a predic-
tion data set of 15 000 cases used for evaluating the algorithms
performance on new narratives. A sample of WC claims inci-
dent narratives with BLS OIICS code assignments are shown
below:
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1. “STANDING UP FROM BENDING OVER STRUCK BACK
ON MAID CART” ->Classified as BLS OIICS event code
63—struck against object or equipment.

2. “FELT PAIN WHILE PULLING LOAD OF WOOD WITH
PALLET JACK” ->Classified as BLS OIICS event code 71—
overexertion involving outside sources.

3. “STOPPED AT STOP SIGN WHEN REAR-ENDED BY
ANOTHER VEH.” ->Classified as BLS OIICS event code
26—Roadway incidents involving motorised land vehicle.

4. “SLIPPED AND FELL ON UNK SURFACE TWISTING HIS
ANKLE SPRAININGIT”.->Classified as BLS OIICS event
code 42—Falls on same level.

5. “EMPLOYEE WAS WALKING ON THE STREET WHEN
HIS RIGHT KNEE POPPED” ->Classified as BLS OIICS
event code 73—Other exertions or bodily reactions.
Using the 15 000 narratives and manually assigned codes

from the training set, a keyword list was created by parsing the
words in each narrative (eg, standing, up, from, bending, etc).
The occurrence or probability of each word in each category
(Pnj/Ci) was calculated as well as the marginal probability of
each event category in the training data set (P(Ci)); these are the
two parameters necessary for the reduced Naïve Bayes algo-
rithm.26 These statistics calculated from the training narratives
were stored in a probability table and used to train the

Table 1 Examples of original and complex applications of narrative text over time

Original applications More complex applications

Article
details Technique Application

Article
details Technique Application

Archer
et al18

Newspaper clipping service used
to manually identify cases of
firearm-related injuries
(unintentional and intentional)
along with other sources
obtained from hospital, police
and vital statistics

Newspaper clipping service
identified almost a third of
firearm-related cases (but only 17%
of suicides) and were a cheap,
accessible and simple data source
albeit incomplete, especially for
suicide

Homan
et al30

Extracted 200 tweets from 2.5
million tweets which noted suicide
terms, used expert and novice ranks
of tweets for distress levels, and
used support vector machine
approach to topic model data

Automated tweet classification
by distress levels to enable
identification of individuals at
risk of suicide through social
media, with use of expert
coders for training data and
machine learning model choice,
important factors affecting
performance of model

Hume
et al31

Free text search of emergency
department data from one New
Zealand hospital for 1 year for
one product (trampoline)

Identified the number of
trampoline-related incidents and
allowed case identification to
enable further review of text and
manual coding of extra
circumstance details

Chen
et al32

Automatic classification of
mechanism and object categories
for 15 000 emergency department
cases across multiple hospitals
using machine learning (matrix
factorisation approach)

Classified mechanism and
objects quickly with accuracy of
0.93, showing potential for use
to reduce need for manual
coding for injury surveillance,
though need for expert input
into modelling required
throughout process to improve
algorithm performance

Sorock
et al 33 and
Lehto and
Sorock24

Free text search of motor vehicle
insurance claims database for
4 years to identify claims where
road work occurring and key
word categorisation of precrash
activities and crash types
through word frequency count
and manual grouping of similar
words to prepare keyword
search strategy. Expanded to
test a Bayesian modelling
approach in second paper

First paper identified number of
incidents and categorised precrash
activities and crash types to
examine patterns of incidents.
Second paper established Bayesian
approach more accurately classified
cases than keywords and pointed
to the early potential for Bayesian
approaches to be developed in this
field

Taylor
et al20

Classified 2285 firefighter
occupation-specific narratives
(longer narratives with average of
216 words), with near-misses and
injuries into injury mechanism and
injury outcome using fuzzy and
naïve Bayesian models with single
word predictors

Classified external causes with
accuracy of 0.74 using fuzzy
model and 0.678 using Naïve
model, with increased training
set size producing higher
sensitivity. Showed that
Bayesian methods can be used
for coding long narratives for
injury incidents and
near-misses

Bauer and
Sector34

Development of a keyword
based search to identify extent
of product involvement in injury
from emergency department
based injury surveillance
database, as well as use of an
expert panel to assess
preventability and potential for
product safety responses

Ability to flag cases where high
likelihood of consumer product
involvement (defective, maladapted
or intrinsically risky) and identify
products most commonly
associated with each category

Pan
et al35

Use of named entity recognition
techniques to automatically parse
unstructured data from a range of
databases (including RAPEX (Rapid
Exchange of Information system)
CPSC and product safety databases
in China and Japan). Used Bayesian
network approach to identify and
code safety factors pertaining to
electric shock

Automated extraction and
coding of relevant cases
incorporating a number of
large publically available
databases from different
regions. Identification of the
key safety factors involved in
electric shock incidents (near
miss and injuries), showing
potential of multiple databases
to extract common scenarios

Bondy
et al36

Manual review of 4000 injury
text reports from construction of
Denver International Airport,
and expert classification of case
details according to Haddon’s
Matrix framework

Classification of text reports
according to Haddon’s Matrix
framework provided a more
complete injury description than
only coding certain injury elements,
as well as providing richer data to
understand injury scenario and
target prevention activity

Zhao
et al37

and Zhao
et al38

Use of electrocution text reports in
national occupational injury
database to extract either key
features according to hierarchy of
control framework or Haddon’s
Matrix framework. Used narrative
text analysis (such as word clusters,
entity extraction, word tagging and
‘textual tag clouds’) using NVivo
qualitative software

Automated extraction and
tagging of key features of
reports and grouping according
to overarching injury prevention
frameworks, to examine main
prevention foci as well as
illustrate decision making
chains. Demonstrates the utility
of text analysis to extract and
elucidate more complex injury
causation scenarios
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algorithm. A similar word list and probability table was con-
structed for 2, 3 and 4 word sequences (each sequence consid-
ered as a keyword, eg, standing-up, up-from, from-bending,
standing-up-from, etc). The Naïve Bayes model was used to
assign a probability to each event code based on the keywords
present in a particular narrative. The event code with the largest
estimated probability was then chosen as the prediction for the
words present.

The theoretical basis for the Naïve Bayes classifier and
detailed instructions on how to implement the algorithm with
narrative data have been thoroughly defined previously.21 26

Various software packages are now publically available for train-
ing (or building) the models based on the training data set and
then making subsequent predictions. Weka39 and Python40 are
two examples of publically available, easily downloadable and
easily adaptable packages for development of the Naïve Bayes
model. For this study, the Textminer software developed by one
of the authors (ML) was used. The narratives were used in their
raw form; although improved performance can be expected
when misspellings are cleaned and words that have the same
meaning are morphed into one syntax, the aim was to demon-
strate what could be achieved by machine learning with little
preprocessing of the narratives. However, a small list of fre-
quently occurring ‘stop words’ believed to have little meaning
for the classification assignment (eg, a, and, left, right) was
removed from the narratives prior to calculating probabilities.

Two Naïve Bayes algorithms were run on each of the 15 000
prediction narratives using first the set of single keyword prob-
abilities and second the sequenced keyword probabilities (stored
in probability tables) from the training narratives in order to
assign two independent computer generated classifications to
the 15 000 prediction narratives.

The authors26 found while the overall sensitivity of the two
independent models was fairly good (0.67 naivesw, 0.65 naiveseq),
both algorithms independently predicted some categories much
better than others, skewing the final distribution of the coded
data (χ² p<0.0001), and most of the cases in the smaller categor-
ies were not found. The sequence-word model showed improved
performance where word order was important for differentiating
causality. Still many categories had low performance. We conse-
quently integrated a rule where we would only use the computer
classifications when the two models agreed and then would
manually code the remaining narratives. Implementing this rule
resulted in an overall sensitivity of codes for the final coded data
set of 87% with high sensitivity and PPVs across all categories
(see tables 2 and 3 and Marucci-Wellman et al26 for more
details). Note, high sensitivity and PPVare important for resulting
in a final unbiased distribution of the coded data for surveillance
and targeting prevention efforts. Also using this human-machine
pairing resulted in 68% of the narratives coded by the algorithm,
leaving only 32% to be coded by humans.

The authors found the accuracy of the human-machine
system was at least as good and likely was even better than
manual coding alone of all 15 000 records as the system uses
consistent rules. This was demonstrated by comparing the
results with inter-rater reliability data for four well trained
human coders. While the evaluation of inter-rater reliability
relies on different metrics, the inter-rater reliability performance
of the four coders does not appear to be as systematically high
and consistent as what is projected from the sensitivity and PPV
values of the human-machine pairing method for the very large
categories, nor the very small categories. Other readily available
and easily adaptable machine learning techniques for narrative
text analyses other than the Bayesian algorithms exist such as

support vector machine (SVM) and logistic regression (LR) and
could also be incorporated to improve accuracy. Work has begun
to investigate ensembles consisting of agreement between these
various algorithms with some slightly improved results over the
ones presented in the case study summary (see table 4). Overall,
this case study demonstrates that a practical and feasible method
exists for human-machine learning of short injury narratives.
The computer was able to accurately classify many of the narra-
tives of a large WC data set leaving a third for human review
and resulting in a very high overall accuracy and very high
accuracy across almost all categories (large and small) in the
final coded data set. Accuracy can be further improved when a
per cent of difficult cases, predicted by the algorithm with a low
confidence, are rejected for manual coding.

DISCUSSION: CHALLENGES AND FUTURE DIRECTIONS
As illustrated in the previous case study, the use of off-the-shelf
machine learning methods combined with human review of
weakly predicted cases is an effective, easily applied method.
However, this approach still required developing a large train-
ing set of previously coded cases to develop the model and
then subsequent human review of around a third of the cases
to attain high sensitivities across all categories in the prediction
set. In practice, obtaining a good training set and the need for
human review (which could be substantial if a third of a very
large data set still requires manual coding) may be major appli-
cation bottlenecks. Numerous strategies and approaches for
tailoring methods to address this problem exist. For the most
part, these strategies and approaches can be roughly divided as:
focusing on obtaining more data (a larger training set), apply-
ing better learning algorithms, or going beyond the training
set, using other sources of information, causal models, or
human knowledge to preprocess the information used by the
learning algorithm. The following discussion briefly builds on
ideas generated by the case study and introduces some of these
other approaches, their effectiveness and emerging trends in
their use.

Obtaining more data or applying better algorithms
The use of a larger training set and better learning algorithms
are commonly suggested strategies for improving model predic-
tions. Previous work32 has shown that model performance
improves for short injury narratives with larger training sets.
The latter study also showed that SVM algorithms performed
better than Naïve Bayes and several other learning algorithms.
However, the improvements were clearly slowing down as the
increase of training data continued. Furthermore, smaller cat-
egories were often poorly predicted by the algorithm, just as
found in the case study above for Naïve Bayes, LR and SVM.
Some further improvements in the SVM model performance
were also observed by Chen et al32 after model factorisation
using singular value decomposition (SVD) to map the word
vectors to a lower dimensional space. The latter result was con-
sistent with earlier studies showing improvements after feature
space reduction using SVD,41 42 and SVD approaches are likely
to be especially useful in ‘big data’ applications where there is
substantial training data available for mapping the lower dimen-
sional space.

Preprocessing data
Overall though, the results using thousands of training examples
across multiple studies suggest that it is doubtful that the need
for human review will be completely eliminated with more data
or by better learning algorithms alone for complex multiclass
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coding schemes and especially so when there is a need to assign
rarely occurring categories (ie, needle stick injuries in the case
study). One potentially promising strategy for improving per-
formance for smaller categories is to go beyond the training set,
using other sources of information, causal models or human
knowledge, to preprocess the information used by the learning
algorithm. Numerous approaches have been used for preproces-
sing injury text prior to applying the learning algorithms such as
word stemming, lemmatisation, dropping infrequent or frequent

words, or weighting schemes such as TF-IDF.32 One advantage
of such approaches is that they provide an easy way of reducing
the dimensionality of the word vector, which can speed learning
of any machine learning algorithm. However, this may sacrifice
accuracy, with the authors’ preliminary work using Naïve Bayes,
LR and SVM showing that these preprocessing approaches have
the potential to reduce the overall detection (distinguishing
between categories) capability, and especially for small categor-
ies.43 Part of the problem is that such approaches do not

Table 2 The accuracy of the human-machine classification system: implementation of a strategic filter† based on agreement between two
Naïve Bayes algorithms

BLS OIICS two-digit event code

Gold
standard‡ Human-machine system coding of all narratives§

% Agreement
between two
manual coders¶

Fleiss κ**
manual
coders(n) npred†† %pred‡‡,§§ Sen¶¶ 95% CI PPV*** 95% CI

1* Violence and other injuries by persons or animals
11 Intentional injury by person 159 132 0.9 0.81 0.75 to 0.87 0.98 0.95 to 1.00 81–97 0.85

2* Transportation incidents
24 Pedestrian vehicular incidents 120 117 0.8 0.78 0.71 to 0.86 0.80 0.73 to 0.88 57–78 0.65
26 Roadway incidents motorised land

vehicle
650 672 4.5 0.98 0.97 to 0.99 0.95 0.93 to 0.97 93–96 0.94

27 Non-roadway incidents motorised
land vehicle

136 122 0.8 0.80 0.73 to 0.87 0.89 0.84 to 0.95 52–84 0.62

4* Falls, slips, trips
41 Slip or trip without fall 806 658 4.4 0.70 0.67 to 0.73 0.86 0.83 to 0.89 66–89 0.71
42 Falls on same level 2148 2386 15.9 0.92 0.91 to 0.93 0.83 0.81 to 0.84 85–93 0.86
43 Falls to lower level 1065 1176 7.8 0.89 0.87 to 0.91 0.81 0.79 to 0.83 78–92 0.81

5* Exposure to harmful substances or environments
53 Exposure to temperature extremes 141 130 0.9 0.86 0.8 to 0.92 0.93 0.89 to 0.97 82–98 0.88
55 Exposure to other harmful

substances
175 165 1.1 0.83 0.77 to 0.88 0.88 0.83 to 0.93 81–96 0.87

6* Contact with objects and equipment
62 Struck by object or equipment 1651 1749 11.7 0.90 0.89 to 0.92 0.85 0.83 to 0.87 82–90 0.82
63 Struck against object or equipment 466 397 2.6 0.74 0.7 to 0.78 0.87 0.84 to 0.91 66–83 0.68
64 Caught in or compressed by

equipment
505 532 3.5 0.90 0.87 to 0.93 0.86 0.83 to 0.89 72–83 0.75

7* Overexertion and bodily reaction
70 Overexertion and bodily reaction,

uns
188 151 1.0 0.59 0.51 to 0.66 0.73 0.66 to 0.80 6–48 0.19

71 Overexertion involving outside
sources

4189 4334 28.9 0.95 0.95 to 0.96 0.92 0.91 to 0.93 87–95 0.87

72 Repetitive motions involving micro
tasks

484 537 3.6 0.90 0.87 to 0.92 0.81 0.77 to 0.84 71–83 0.75

73 Other exertions or bodily reactions 916 827 5.5 0.79 0.76 to 0.82 0.88 0.85 to 0.90 56–85 0.64
X* All other classifiables (n<100) in training data set
xx Other small (n<100 cases)

classifiable categories†††
632 467 3.1 0.68 0.64 to 0.72 0.92 0.89 to 0.94 – –

Non-classifiable

9999
Non-classifiable 569 448 3.0 0.70 0.66 to 0.74 0.89 0.86 to 0.92 69–84 0.72

Overall 15 000 15 000 100.0 0.87 0.87 to 0.88 0.87 0.87 to 0.88 77–90 0.78

Adapted from Marucci-Wellman et al.26

†A filter is a technique to decide which narratives the computer should classify versus which should be left for a human to read and classify.
‡Gold standard codes were assigned to each narrative by expert manual coders.
§Human-machine system: The computer assigns codes to narratives that the algorithms agreed on the classification (68% of the data set), and the remainder are manually coded
(32% of the data set).
¶Two-coder agreement, for example, 6 total comparisons, coder 1 compared with 2, 3, 4, coder 2 compared with 3, 4, coder 3 compared with 4.
**Fleiss κ between 0 and 1, >0.6 considered good agreement, >0.8 considered very good agreement.
††npred=number predicted into category.
‡‡%pred=per cent of cases in whole data set predicted into category.
§§The distribution of two-digit classifications will be skewed towards categories with high sensitivity, biasing the final distribution of the coded data sets.
¶¶Sen=Sensitivity: (true positives) the percentage of narratives that had been coded by the experts into each category that were also assigned correctly by the algorithm.
***PPV, the percentage of narratives correctly coded into a specific category out of all narratives placed into that category by the algorithm.
†††Two-digit categories with <100 cases.
BLS, Bureau of Labor Statistics; OIICS, Occupational Injury and Illness Classification System.
*-Asterisks denote a summary level code not assigned to individual cases (see http://www.bls.gov/iif/osh_oiics_2010_2_4_2.pdf)
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Table 3 The accuracy of the human-machine classification system: implementation of a strategic filter† based on agreement between the two
naïve bayes algorithms (results for small categories only, n<100 cases in each category)

BLS OIICS two-digit event code

Gold
standard‡ Human-machine system coding of all narratives§ % Agreement between

two manual coders¶
Fleiss κ**
manual coders(n) npred†† Sen‡‡ (95% CI) PPV§§ 95% CI

1* Violence and other injuries by persons or animals
12 Injury by person—intentional or intent

unknown
96 78 0.66 0.56 to 0.75 0.81 0.71 to 0.88 47–78 0.57

13 Animal and insect related incidents 99 79 0.80 0.71 to 0.87 1.00 1.00 to 1.00 79–94 0.87
2* Transportation incidents
20 Transportation incident, unspecified 3 3 1.00 1.00 to 1.00 1.00 1.00 to 1.00 0–0 0.00
21 Aircraft incidents 22 15 0.68 0.47 to 0.89 1.00 1.00 to 1.00 0–75 0.17
22 Rail vehicle incidents 6 4 0.67 0.12 to 1.00 1.00 1.00 to 1.00 0–100 0.67
23 Animal and other non-motorised

vehicle transport incidents
14 13 0.86 0.65 to 1.00 0.92 0.76 to 1.00 0–0 0.00

25 Water vehicle incidents 11 5 0.45 0.1 to 0.81 1.00 1.00 to 1.00 0–88 0.25
3* Fires and explosion
31 Fires 22 20 0.91 0.78 to 1.00 1.00 1.00 to 1.00 55–88 0.58
32 Explosions 21 18 0.86 0.69 to 1.00 1.00 1.00 to 1.00 44–83 0.46

4* Falls, slips, trips
40 Fall, slip, trip, unspecified 4 2 0.50 0.00 to 1.00 1.00 1.00 to 1.00 0–0 0.00
44 Jumps to lower level 57 39 0.61 0.48 to 0.74 0.90 0.80 to 1.00 51–90 0.65
45 Fall or jump curtailed by personal fall

arrest system
3 2 0.67 0.00 to 1.00 1.00 1.00 to 1.00 0–0 0.00

5* Exposure to harmful substances or environments
50 Exposure to harmful substances or

environ, unspecified
23 18 0.78 0.6 to 0.96 1.00 1.00 to 1.00 21–88 0.33

51 Exposure to electricity 27 18 0.67 0.48 to 0.86 1.00 1.00 to 1.00 65–88 0.81
52 Exposure to radiation and noise 38 36 0.87 0.76 to 0.98 0.92 0.82 to 1.00 54–100 0.80
54 Exposure to air and water pressure

change
1 0 0.00 – 0.00 – 0–100 0.40

57 Exposure to traumatic or stressful even
nec

32 23 0.72 0.55 to 0.88 1.00 1.00 to 1.00 73–85 0.80

59 Exposure to harmful substances or
environments, nec

1 7 0.00 – 0.00 – 0–100 0.12

6* Contact with objects and equipment
60 Contact with objects and equipment,

uns
78 43 0.54 0.43 to 0.65 0.98 0.93 to 1.00 12–63 0.25

61 Needle stick 1 1 1.00 1.00 to 1.00 1.00 1.00 to 1.00 – –

65 Struck/caught/crush in collapsing
structure, equip or material

5 3 0.60 0.00 to 1.00 1.00 1.00 to 1.00 0–0 0.33

66 Rubbed or abraded by friction or
pressure

16 12 0.69 0.43 to 0.94 0.92 0.73 to 1.00 0–50 0.11

67 Rubbed abraded or jarred by vibration 7 4 0.57 0.08 to 1.00 1.00 1.00 to 1.00 0–67 0.14
69 Contact with objects and equipment,

nec
1 1 1.00 1.00 to 1.00 1.00 1.00 to 1.00 – –

7* Overexertion and bodily reaction
74 Bodily conditions nec 20 10 0.50 0.26 to 0.74 1.00 1.00 to 1.00 0–75 0.33

78 Multiple types of overexertion and
bodily reactions

23 13 0.39 0.18 to 0.61 0.69 0.40 to 0.98 0–0 0.00

79 Overexertion and bodily reaction and
exertion, nec

1 0.00 – 0.00 – – –

Overall 437 467 0.68 0.64 to 0.72 0.92 0.89 to 0.94

Adapted from Marucci-Wellman et al.26

†A filter is a technique to decide which narratives the computer should classify versus which should be left for a human to read and classify.
‡Gold standard codes were assigned to each narrative by expert manual coders.
§Human-machine system consisted of human coding 32% of the data set, machine coding 68% of the data set.
¶Two-coder agreement, for example, 6 total comparisons, coder 1 compared with 2, 3, 4, coder 2 compared with 3, 4, coder 3 compared with 4.
**Fleiss κ between 0 and 1, >0.6 considered good agreement, >0.8 considered very good agreement.
††npred=number predicted into category.
‡‡Sen=Sensitivity: (true positives) the percentage of narratives that had been coded by the experts into each category that were also assigned correctly by the algorithm.
§§PPV, the percentage of narratives correctly coded into a specific category out of all narratives placed into that category by the algorithm.
BLS, Bureau of Labor Statistics; OIICS, Occupational Injury and Illness Classification System.
*-Asterisks denote a summary level code not assigned to individual cases (see http://www.bls.gov/iif/osh_oiics_2010_2_4_2.pdf)
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consider the meaning of words. For example, in related as yet
unpublished work, the authors found that stemming or lemma-
tising the words ‘lifting’ and ‘lifts’ to their root ‘lift’ reduces the
ability of SVM, NB and LR to distinguish injuries related to
exertion from those caused by man lifts or fork lifts. Similarly,
dropping infrequent words in this large word set of 10 000
words such as ‘muggers’ or ‘rape’ reduced the ability to identify
assault cases.

Targeted mapping of only certain words to a common
meaning, on the other hand, tended to improve performance
(eg, HOT and SCALDING or bike and bicycle). The latter
approach was especially useful for finding predictive word
sequences (eg, ‘all words that mean a person’ followed by the
word ‘fell’ separates struck by events from fall events). Based on
the author’s preliminary results, systematic development of a
lexicon mapping words, word-sequences and word combina-
tions that relate to important concepts can greatly improve the
sensitivity across categories of any machine learning algorithm.
For example, the authors found the generic concept ‘hit body
part on’ identified as a sequence of words that can mean hit, fol-
lowed by words that can mean a body part, followed by either
the frequent words ‘or’ or ‘against’, greatly improved the ability
of Naïve Bayes, SVM and LR alike to distinguish struck against
events from falls and struck against events. The finding that a
good lexicon can improve the performance of machine learning
algorithms for short injury narratives is not surprising. The
caveat is that manually developing a good lexicon is very time-
consuming, since data sets will contain thousands of unique
words and words will have different meanings depending on
what other words are present (really requiring topic appropriate
linguist experts to do this work). Further complicating the
matter, a causal model may be necessary to organise the con-
cepts into a predictive model. Illustrating recent developments
in this direction, Abdat et al44 developed a causal model of con-
struction injuries using a Bayesian network to identify the prob-
able explanation of injuries based on generic factors extracted
by experts from injury scenarios. Other work in this direction
included the use of automated named entity recognition techni-
ques to automatically parse unstructured data from several data-
bases which were then used in a Bayesian network to identify
and code safety factors.35

An interesting conjecture is that these findings suggest a
lexicon or causal factors generated from one text mining
project can be used to help code another project’s uncoded
narratives. Transfer of results would seem to be especially
promising when data sets have the same focus, like occupa-
tional hazards. For example, if the results obtained using the
database from the National Firefighter Near-Miss Reporting
System20 were applied to narratives from the Fire Fighter
Fatality Investigation and Prevention Program, one would
expect falls to be predicted with fairly good accuracy because

the language firefighters use to describe their hazards is similar
(‘roof, spongy’ are precise predictors for firefighter falls caused
from a weakening roof on fire). Similarly, a multitude of terms
identified as toxic chemicals (eg, hydrogen sulfide, toluene) in
one data set could be directly mapped to the concept ‘toxic
chemical’ used in a new application, rather than relying on the
training set alone. Future studies might also explore how well
key words and word predictors in a home and leisure injury
database25 would predict injuries in occupational narratives. If
one wanted to autocode causes of injury in firefighter narra-
tives using results obtained from a knowledge database
(meaning a collection of either narratives linked to manually
assigned codes or word lists with corresponding probability
weights) created from a home and leisure population level
database, the terms used to describe important concepts in a
firefighter database could be nodes in a Bayesian network
retrained using the home and leisure injury database to esti-
mate probability weights (Pnj/Ci) for the new database. The
new weights would adjust the original weights for terms such
as ‘roof, spongy’ used as a precise predictor for firefighter falls
but unlikely to indicate a fall when at home or in leisure activ-
ities. This approach will enable the development of weighting
coefficients (as adjustments) to the probabilities that comprise
the knowledge database before it is transferred from population
narratives to occupational narratives. This work—while cur-
rently hypothetical—would, if feasible, provide critical proof of
concept: if high specificity, sensitivity and PPV are able to be
attained, there would be good evidence that weighting of prob-
abilities would be the next step in making machine learning
algorithms more broadly transferrable helping to reduce
resources needed for human coding.

Building an open source knowledge base
For machine learning algorithms to be broadly used, they
need to be accessible and refined in an open source manner.
Ideally, researchers could share data and algorithms, perhaps
in a cloud based shared-access knowledge database. Along
these lines, Purdue University (ML) is in the process of creat-
ing an open source framework that can serve as a repository
for shared injury coding knowledge databases. This frame-
work would allow remote access to data sets of coded and
uncoded narratives, machine learning algorithms, lexicons
and other information, enabling researchers to share their
results, develop better models more quickly and ultimately
reduce the need to manually code in the traditionally
resource-dependent manner. The expectation is that as the
open source repository grows, new models will be developed
that accurately code injury narratives within specific content
areas. As more narratives are put into the knowledge database
such models should perform more precisely and accurately.
The end product would be an open-sourced knowledge

Table 4 The accuracy of the human-machine classification system: implementation of a strategic filter* based on agreement of predictions
between selected combinations of different algorithms (Naïve Bayes single word, Naïve Bayes bi-gram, SVM, logistic regression)

Two-model agreement Three-model agreement

Models

SVM=Naïve
Bayes single
word (%)

SVM=Naïve
Bayes bi-gram
(%)

SVM=Logistic
(%)

Logistic=Naïve
Bayes single
word (%)

Logistic=Naïve
Bayes bi-gram (%)

SVM=Naïve
Bayes single
word=logistic (%)

SVM=Naïve Bayes
single word=Naïve
Bayes bi-gram (%)

Overall Sensitivity/PPV 87 89 81 86 88 89 93
Manually coded 28 33 14 24 29 31 43

*A filter is a technique to decide which narratives the computer should classify versus which should be left for a human to read and classify.
SVM, support vector machine.
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repository that stores words and associated probabilities in
order to code injury narratives, where researchers and other
organisations may upload their injury narratives, select what
rubric and algorithm to apply, and then run the model to
obtain injury codes for their narrative data.

Providing better access to training data and cloud based com-
puter coding methods would enable researchers without previ-
ous access to computerised coding software and/or without a
training set for the algorithm to code their data. This has global
implications because health systems in the developing world
have yet to move to computerised information systems and their
only option may be narratives as trained coders are often scarce.

A shared knowledge database would enable injury researchers,
organisations and government health agencies to code and
analyse large injury narrative data sets without the need for sub-
stantial resources as previously required, liberating these
untapped data sources to be used for surveillance, policy and
implementing interventions. Ultimately, the future of injury sur-
veillance must address who funds such a data warehouse and
how it is financially sustained with appropriate technical
assistance.

One of the challenges in building a knowledgebase of narra-
tives and moving from privately used data sets to publically
available data sets is the issue of confidentiality. Injury narratives
may contain personally identifiable information (such as patient
names) or company identifiable information (such as brands of
products). To enable sharing of narratives more publically, lan-
guage parsing techniques which can automatically de-identify
details from narrative text (without losing the context of the
narrative) will need to be incorporated into text mining
methods, and there have already been significant advances in
such techniques.45

Human-directed learning
Nevertheless, algorithms do only what humans tell them. The
human factors of manual review, quality assurance, and
‘knowing your data’ will still be required especially to identify
new or emerging hazards and to understand the complex inter-
action of contributory factors—a principle of surveillance. Text
mining for injury surveillance stands apart from other data
mining efforts such as that used by generic search engines.
Generic search engines allow algorithms to find whatever they
can, while human-directed injury surveillance through text
mining is looking for particular outcomes—injuries, and par-
ticular features (eg, host, agent, vector environment), classifiable
to specified categories defined by the end user. The role of the
human in teaching the algorithm how to behave is vital to
getting it right.

It is difficult for an algorithm on its own to be able to assign
classifications in all categories with the same level of confidence
and very difficult to improve the accuracy of computer gener-
ated codes for the small categories or for identifying emerging
hazards. Improvement beyond simply modelling of a training
data set to use on a prediction data set requires either sophisti-
cated filtering or tailoring of the algorithm (with natural lan-
guage processing) to identify small categories or other nuances
of the coding protocol and the latter approach will still not
allow for emerging risks to surface.

It was stated from the beginning25 that manual coding should
never be completely replaced and therefore a best practice
approach should incorporate some manual coding, assigning a
computer classification only for more repetitive events where
the models are able to confidently predict the correct classifica-
tion. This will be especially important for rare events and/or

emerging hazards that appear only a very small number of times
or not at all in a training data set. For example, a new MVC
hazard (exploding magnesium steering column) would cause a
human reviewer to query why steering columns explode on
impact and if they represent a new material hazard to drivers
and first responders. An algorithm would simply say this does
not happen enough to be coded with certainty and would flag it
for manual review. For large administrative data sets, incorpor-
ation of methods based on human-machine pairings such as pre-
sented in this paper using readily available off-the-shelf machine
learning techniques result in only a fraction of narratives that
require manual review.

CONCLUSION
Machine learning of ‘big injury narrative data’ opens up
many possibilities for expanded sources of data that can
provide more comprehensive, ongoing and timely surveil-
lance to inform injury prevention policy and practice in the
future. This paper has demonstrated the significant value that
injury narratives provide beyond structured coded data sets.
It is critically important that, as an injury prevention

What this study adds

▸ Reiteration of the significant value that injury narratives
provide beyond structured coded data sets and evidence for
the continued need to advocate for narratives to be included
(or introduced) in routine data sources to capitalise on this
potential as computing and technical capacity expands.

▸ Demonstration of a practical and feasible method for
semiautomatic classification using human-machine learning
of injury narratives which is accurate, efficient and
meaningful and applicable to different injury domains.

▸ The opening of a dialogue within the injury surveillance
community regarding future steps towards developing a ‘big
injury narrative data’ knowledge base to allow for the
building, testing and refinement of machine learning
algorithms.

What is already known on this subject

▸ Large amounts of coded injury data and injury narratives are
being collected universally daily and are available real time,
yet the development and standardisation of machine
learning approaches using injury narratives is nascent.

▸ Injury narratives provide opportunities to (A) identify the
cases not able to be detected due to coding limitations,
(B) extract more specific information than codes allow,
(C) extract data fields which aren’t part of the coding
schema, (D) establish chain-of-events scenarios and
(E) assess coding accuracy.

▸ The main focus of machine learning techniques using injury
narratives has been to quickly filter large numbers of
narratives to accurately and consistently classify and track
high-magnitude, high-risk and emerging causes of injury, to
guide the development of interventions for prevention of
future injury incidents.
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community, we continue to advocate for the need for narra-
tives to be included (or introduced) in routine data sources to
capitalise on this potential as computing and technical cap-
acity expands and not just rely on coded checkboxes. Second,
the authors have argued for the need for a more systematic
and incremental approach to developing machine learning
approaches for the specialised purpose of injury surveillance,
as distinct from other applications of machine learning more
broadly. Modelling techniques (and research applications)
vary in terms of levels of specificity and sensitivity, simplicity
and complexity, and the building and refinement of these
techniques require input from content experts and technical
experts. The authors proposed future steps towards develop-
ing a ‘big injury narrative data’ platform to allow for the
building, testing and refinement of machine learning algo-
rithms. Finally, the need for human-machine pairings was
reiterated to ensure machine learning approaches continue to
reflect the underlying principles of injury surveillance.

The last 20 years has seen a dramatic change in the potential
for technological advancements in injury surveillance and we
have many examples of successful applications of such technol-
ogy to injury narratives. It is now time to consolidate these
learnings to build more sustainable, reliable and efficient
approaches which will ensure the most robust use of the evi-
dence base for injury prevention.
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